PERPANGKATAN ALJABAR

Coba kalian ingat kembali operasi perpangkatan pada bilangan bulat. Operasi perpangkatan diartikan sebagai operasi perkalian berulang dengan unsur yang sama. Sekarang kalian akan mempelajari operasi perpangkatan pada bentuk aljabar.

Pada perpangkatan bentuk aljabar suku satu, perlu diperhatikan perbedaan antara 3x2, (3x)2, –(3x)2, dan (–3x)2 sebagai berikut.
a. 3x2 = 3.x.x = 3x2
b. (3x)2 = (3x).(3x) = 9x2
c. –(3x)2 = –((3x).(3x)) = –9x2
d. (–3x)2 = (–3x).(–3x) = 9x2
Untuk menentukan perpangkatan pada bentuk aljabar suku dua, perhatikan uraian berikut.
(a + b)1 = a + b
koefisien a dan b adalah 1 1
(a + b)2 = (a + b) (a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2
koefisien a2, ab, dan b2 adalah 1 2 1
(a + b)3 = (a + b) (a + b)2 = (a + b) (a2 + 2ab + b2) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a3 + 3a2b + 3ab2 + b3
koefisien a3, a2b, ab2 dan b3 adalah 1 3 3 1
(a + b)4 = (a + b)2 (a + b)2 = (a2 + 2ab + b2) (a2 + 2ab + b2) = a4 + 2a3b + a2b2 + 2a3b + 4a2b2 + 2ab3 + a2b2 + 2ab3 + b4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
koefisien a4, a3b, a2b2, ab3, dan b4 adalah 1 4 6 4 1

Demikian seterusnya untuk (a + b)n dengan n bilangan asli. Berdasarkan uraian tersebut, dapat disimpulkan koefisien-koefisien (a + b)n membentuk barisan segitiga Pascal seperti berikut.

Pangkat dari a (unsur pertama) pada (a + b)n dimulai dari an kemudian berkurang satu demi satu dan terakhir a1 pada suku ke-n. Sebaliknya, pangkat dari b (unsur kedua) dimulai dengan b1 pada suku ke-2 lalu bertambah satu demi satu dan terakhir bn pada suku ke-(n + 1).

0 komentar:

Poskan Komentar

About this blog

My Blog List

Total pengunjung

kursot berbintang

jam

marquuee

wiwid wulandari

ShoutMix chat widget

ShoutMix chat widget

cbox

google translet

jadwal sholat

Category

Loading...
Diberdayakan oleh Blogger.

Amazon MP3 Clips

Pengikut

Fish

About Me

Foto Saya
wiwid_woeLaendariye
Lihat profil lengkapku

Blog Archive

Ada kesalahan di dalam gadget ini

Blog Archive