Teorema Sisa
Teorema Sisa
1. Suku banyak berderajat n habis dibagi (x-a), maka sisanya adalah 0
2. Suku banyak berderajat n dibagi (x-a), maka sisanya adalah f(a)
3. Suku banyak berderajat n dibagi (ax+ b), maka sisanya adalah
Hasil bagi suku banyak f(x) oleh ax+b adalah H(x) dan sisa S, hal ini ditulis
f(x)=(ax+b)H(x)+S
untuk
Contoh :
Tentukan sisa pembagian suku banyak 2x3 – x2 + 3x -1 oleh
a. x b. x-1 c. x+2 d. 2x+1
Jawab :
1. f(0) = -1
2. f(1)= 2 – 1 + 3 – 1 = 3
3. f(-2)= 2(-2)3 – (-2)2 + 3(-2) – 1 = -27
4. f(- ½ )=
Latihan :
13. Tentukan sisa pembagian x3 – 6x2 + 11x – 6 oleh
a. x+1 b. x-1 c. x+2 d.xX-2 e. x-3
14. Diketahui f(x) = x3 + ax2 + bx – 2 . Jika Sisa pembagian f(x) oleh x+1 sama dengan sisa pembagian f(x) oleh (x-2), tentukan nilai a dan b
Suku banyak berderajat lebih dari 2 dibagi (ax2+bx + c) mempunyai sisa ax + b
Contoh 11.
Tentukan hasil bagi x3-2x2+ 4x – 3 oleh (x+1)(x-2)
Jawab :
x3-2x2+ 4x – 3 = (x+1)(x-2)H(x) + ax + b
untuk x = -1 è (-1)3-2(-1)2 + 4(-1) -3 = (-1+1)(-1-2)H(x)= a(-1) + b
-1 – 2 – 4 – 3= -a + b
-a+ b = -10........................................................... (1)
untuk x = 2 è 8 – 8 + 8 – 3 = 2a + b
2a+b= 5 ............................................................... (2)
Dengan cara eliminasi atau substitusi diperoleh a = 5 dan b = -5
Jadi Sisa pembagian x3-2x2+ 4x – 3 oleh (x+1)(x-2) adalah 5x - 5
Contoh 12.
x3 + ax + b:(x-1)(x-2) mempunyai sisa 2x+_1, tentukan a dan b
Jawab :
x3 + ax + b=(x-1)(x-2)H(x) + 2x + 1
untuk x = 1 è (1)2+ a(1) + b = 2(1) + 1
a + b = 2 ………………… (1)
untuk x = 2 è (2)3 + a(2) + b = 2(2) + 1
2a + b = -3 …………………..(2)
Dengan cara eliminasi atau substitusi maka diperoleh a =-5 dan b = 7
15. x10 + ax5 + b habis dibagi x2 – 1
Jawab :
x2 – 1= (x-1)(x+1)
untuk x=-1 è (-1)10 + a(-1)5 + b = 0 (karena f(x) habis dibagi x2 – 1)
a - b = -1 ……………………………………….. (1)
untuk x=1 è (1)10 + a(1)5 + b = 0
a + b = -1 …………………………………….. (2)
Dengan cara eliminasi atau substitusi didapat a = 0 dan b=-1
15. 2x3+ x2 + ax + 1 habis dibagi x2+ b, tentukan nilai a dan b
Jawab:
2x3+ x2 + ax + 1 =( x2+ b) H(x)
2x3+ x2 + ax + 1 =( x2+ b) (px + q)
2x3+ x2 + ax + 1 =px3 + qx2 + bpx + bq
p = 2 ; q = 1 ; a = bp ; bq = 1
bq = 1 è b = 1
a=bp ó a = 1.2 ó a = 2
Jadi : a =2 b=1 p = 2 q = 1
15. Tentukan nilai a dan b jika 4x3 + ax + b dibagi 2x2 + 1 mempunyai sisa (x+ 1)
Jawab :
4x3 + ax + b = (2x2 + 1)H(x) + (x+1)
4x3 + ax + b = (2x2 + 1)(2x + q) + (x+1)
= 4x3 + 2qx2 + 3x +q + 1
2q=0 ó q = 0 a=3 dan b= q+1 ó b = 1
15. H(x) dibagi (x-2) sisa 5, dan H(x) dibagi (x-3) sisa 7. Tentukan sisa pembagian f(x) oleh (x-2)(x-3)
Jawab
f(x) : x-1 sisanya 6 dan f(x) : (x-2)2 sisanya 6x + 1
f(x) = (x-1)(x-2) + ax + b
f(1) = a + b = 6
f(2)= 2a + 1 = 13
Didapat a= 7 dan b = -1
15. Jika f(x) dibagi (x-1)2 mempunyai sisa 2x+3. Tentukan sisa pembagian f(x) oleh (x-1)
f(1) = ( x – 1)2H(x) + 2x + 3
= 0 + 2 + 3 = 5
Sisa pembagian f(x) oleh (x-1) adalah 5
15. Jika f(x) dibagi (x-3) bersisa 2, tentukan sisa pembagian f(x)(x2+1) oleh (x-3)
Jawab :
f(x) = (x-3)H(x) + 2 ó f(3) = 2
15. f(x) dibagi (x2-4) mempunyai sisa 2x-2; g(x) dibagi (x-2) mempunyai sisa 5. Tentukan sisa pembagian [f(x).g(x)]2 oleh (x-2)
Jawab :
f(x) = (x-4)H(x) + 2x- 2 è f(2) = 2.2 – 2 = 2
g(x)= (x–3)H(x) + 5 è g(2) = 5
{f(x).g(x)}3 : (x-2) è { f(2). G(2) }3 = {2 . 5}3 = 1000
15. M(x) dibagi (x-2) sisa 6; H(x) dibagi (x-1)2 sisa 6x+1. Tentukan sisa pembagian M(x) oleh(x-1)(x-2)
Jawab :
f(x) = (x-1)(x-2)H(x) + ax + b
f(1) = a + b = 6
f(2) = 2a + b = 13
didapat a= 7 dan b = -1 Jadi Sisanya : 7x - -1
15. Jika f(x), g(x) habis dibagi (x+2) dan h(x)=x3-6x2-x+30 adalah KPK dari f (x) dan g(x). Tentukan nilai f(1)+g(1)=….
Jawab :
15. f(x):(x+2) sisanya 0; f(x) dibagi (x-1) sisanya 6; dan f(x) dibagi (x-2) sisanya 12. Tentukan persamaan parabola tersebut ?
27. Tentukan Tentukan sisa pembagian x2 –(2y+3)x + y2+ 3y + 2 oleh
1. (x-y-1) b. (x-y-2)
27. Tentukan faktor suku banyak 2x2 +(3y-y)x + (y-1)(y-2)=0
27. Tentukan sisa pembagian x3 + ax2 + bx+6 oleh x2-x – 2
Label:
Matematika X
0 komentar:
Posting Komentar